
django-cookiecutter
Release 1.0.0

godfrey-ndungu

May 11, 2023

CONTENTS:

1 Features: 3
1.1 Important: . 3

2 How to 5
2.1 Set Up Development with django-cookiecutter . 5
2.2 Change the Django Project Name from “cookiecutter” to a Desired Name 6
2.3 Customize AWS File Storage in cookiecutter.storagebackend using boto3 6
2.4 Change Celery Task Name in cookiecutter.celery and Updating Docker Compose celery_worker Com-

mand . 7
2.5 Replace Redis with RabbitMQ . 9
2.6 Customize Django Rest Errors . 11
2.7 Add Logs . 12
2.8 Change the database in cookiecutter settings and development files from PostgreSQL 13
2.9 Customize Ansible Variables . 14
2.10 Adding Items to the Docs/Source Folder . 15

3 Core 17
3.1 TrackableModel . 17
3.2 TimestampedModel . 17
3.3 Task . 18
3.4 apps.core.models . 18

4 Accounts 25
4.1 Models . 25
4.2 apps.accounts.models . 30

5 Indices and tables 41

i

ii

django-cookiecutter, Release 1.0.0

Welcome to django-cookiecutter’s documentation!

Django cookie cutter is a template or starting point for creating a new Django project with a set of features and com-
ponents. This cookie cutter is designed for developers who want to start with a basic Django project structure and add
their own custom features as needed.

CONTENTS: 1

django-cookiecutter, Release 1.0.0

2 CONTENTS:

CHAPTER

ONE

FEATURES:

The Django cookie cutter includes the following features:

• AWS S3

• PostgreSQL

• TOX

• Python Celery

• Redis

• Ansible deployment playbooks

• Local deployment makefile

• CircleCI

• GitLab CI for security configs

• Python Decouple for env

• Django Rest Framework (DRF)

• DRF-Swagger

• Docker

• Kubernetes

1.1 Important:

Please note that the Django cookie cutter is intended to provide a basic project structure that can be extended to meet
your specific requirements.

3

django-cookiecutter, Release 1.0.0

4 Chapter 1. Features:

CHAPTER

TWO

HOW TO

2.1 Set Up Development with django-cookiecutter

This guide will walk you through the steps to set up a development environment for the django-cookiecutter project.

Prerequisites

Before you begin, make sure you have the following software installed on your system:

• Git

• Python 3

• virtualenv

Step 1: Clone the Project

First, clone the project repository by running the following command:

git clone https://github.com/Godfrey-Ndungu/django-cookiecutter.git
cd django-cookiecutter

Step 2: Make the Makefile Executable

Next, make the Makefile executable by running the following command:

chmod +x makefile.sh

Step 3: Execute the Makefile

Now, execute the Makefile by running the following command:

./makefile.sh

This will install the following software on your system:

• Redis

• PostgreSQL

• Ansible

• Docker

• Docker Compose

• Python

• Setuptools

5

django-cookiecutter, Release 1.0.0

It will also create a virtual environment and install the project requirements.

2.2 Change the Django Project Name from “cookiecutter” to a Desired
Name

This guide will walk you through the steps to change the Django project name from “cookiecutter” to a desired name.

Step 1: Rename the Project Directory

First, rename the project directory from “cookiecutter” to your desired name:

mv cookiecutter/ myproject/

Step 2: Update the Project Name in Files

Next, update the project name in the following files:

• myproject/settings/base.py: Change the ROOT_URLCONF to the new URL conf module.

• myproject/wsgi.py: Change the DJANGO_SETTINGS_MODULE to the new settings module.

• myproject/asgi.py: Change the DJANGO_SETTINGS_MODULE to the new settings module.

• manage.py: Change the DJANGO_SETTINGS_MODULE to the new settings module.

• myproject/settings.py: Change the DEFAULT_FILE_STORAGE to the new settings module.

Step 3: Update the Project Name in Docker and Docker Compose Files

If you are using Docker and Docker Compose, update the project name in the following files:

• docker-compose.yml: Change the services.app.container_name to the new container name.

• docker-compose.prod.yml: Change the services.app.container_name to the new container name.

• Dockerfile: Change the WORKDIR and COPY commands to reflect the new project directory name.

Step 4: Update the Project Name in AWS Configs

If you are using AWS, update the project name in the following files:

• backend/settings.py: Change the ROOT_URLCONF to the new URL conf module.

Step 5: Conclusion

You have now successfully changed the Django project name from “cookiecutter” to your desired name.

2.3 Customize AWS File Storage in cookiecutter.storagebackend us-
ing boto3

This guide will walk you through the steps to customize AWS file storage in cookiecutter.storagebackend using boto3.

Step 1: Install Boto3

First, make sure you have boto3 installed in your project environment:

pip install boto3

6 Chapter 2. How to

django-cookiecutter, Release 1.0.0

Step 2: Configure AWS Credentials

Next, configure your AWS credentials in your environment variables or AWS configuration files.

Step 3: Customize cookiecutter.storagebackend

Now, customize cookiecutter.storagebackend to use AWS S3 file storage by modifying the backend.py file as follows:

import boto3
from django.core.files.storage import get_storage_class

s3 = boto3.resource('s3')
storage_class = get_storage_class('storages.backends.s3boto3.S3Boto3Storage')

class CustomS3Storage(storage_class):
def __init__(self, *args, **kwargs):

kwargs['bucket'] = 'my-bucket-name' # Replace with your S3 bucket name
super().__init__(*args, **kwargs)

def _save(self, name, content):
"""
Save a file to AWS S3.
"""
self._create_bucket_if_not_exists()
return super()._save(name, content)

def _create_bucket_if_not_exists(self):
"""
Create an S3 bucket if it does not already exist.
"""
if self.bucket_name not in [bucket.name for bucket in s3.buckets.all()]:

s3.create_bucket(Bucket=self.bucket_name)

DEFAULT_FILE_STORAGE = 'path.to.CustomS3Storage'

Step 4: Test the Custom Storage Backend

Finally, test the custom storage backend by uploading a file to S3 using Django’s default_storage:

from django.core.files.storage import default_storage

file = open('/path/to/file.jpg', 'rb')
default_storage.save('file.jpg', file)

2.4 Change Celery Task Name in cookiecutter.celery and Updating
Docker Compose celery_worker Command

This guide will walk you through the steps to change the Celery task name in cookiecutter.celery and update Docker
Compose celery_worker command.

Step 1: Rename the Celery Task Name

First, rename the Celery task name from tasks.example to your desired name in celery.py file:

2.4. Change Celery Task Name in cookiecutter.celery and Updating Docker Compose
celery_worker Command

7

django-cookiecutter, Release 1.0.0

app.conf.task_default_queue = 'default'
app.conf.task_default_exchange_type = 'topic'
app.conf.task_default_routing_key = 'default'

app.conf.task_routes = {
'new_task': {'queue': 'new_task_queue', 'routing_key': 'new_task'},
'example': {'queue': 'example_queue', 'routing_key': 'example'}
Change 'example' to your desired task name

}

Step 2: Update Docker Compose celery_worker Command

Next, update the Docker Compose celery_worker command in docker-compose.yml file to use the new Celery task
name:

version: '3'

services:
app:
build:
context: .

command: >
sh -c "python manage.py migrate &&
python manage.py runserver 0.0.0.0:8000"

ports:
- "8000:8000"

depends_on:
- db
- redis
- celery_worker

environment:
- DB_HOST=db
- REDIS_URL=redis://redis:6379/0

celery_worker:
build:
context: .

command: >
sh -c "celery -A myproject worker -l info -Q new_task_queue,example_queue" #␣

→˓Change 'example' to your new task name
depends_on:
- db
- redis

environment:
- DB_HOST=db
- REDIS_URL=redis://redis:6379/0

db:
image: postgres:12-alpine
environment:
POSTGRES_USER: myproject
POSTGRES_PASSWORD: myproject
POSTGRES_DB: myproject

(continues on next page)

8 Chapter 2. How to

django-cookiecutter, Release 1.0.0

(continued from previous page)

redis:
image: redis:5-alpine

Step 3: Restart Docker Compose Services

Finally, restart the Docker Compose services to apply the changes:

docker-compose down
docker-compose up --build

2.5 Replace Redis with RabbitMQ

This guide will walk you through the steps to replace Redis with RabbitMQ as the message broker in your Django
project.

Step 1: Install RabbitMQ

First, you need to install RabbitMQ. You can follow the official documentation for installation instructions: https:
//www.rabbitmq.com/download.html

Step 2: Install the Required Packages

Next, you need to install the required packages to use RabbitMQ as the message broker. You can install the pika package
with pip:

pip install pika

Step 3: Update the Celery Configuration

Update the Celery configuration in celery.py file to use RabbitMQ as the message broker:

from kombu import Exchange, Queue

broker_url = 'amqp://guest:guest@localhost:5672//' # Change this to your RabbitMQ URL

task_queues = (
Queue('default', Exchange('default'), routing_key='default'),
Queue('new_task_queue', Exchange('new_task'), routing_key='new_task'),

)

task_routes = {
'new_task': {'queue': 'new_task_queue', 'routing_key': 'new_task'},

}

Step 4: Update the Docker Compose Configuration

Update the Docker Compose configuration in docker-compose.yml file to use RabbitMQ instead of Redis:

version: '3'

services:
app:
build:

(continues on next page)

2.5. Replace Redis with RabbitMQ 9

https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html

django-cookiecutter, Release 1.0.0

(continued from previous page)

context: .
command: >
sh -c "python manage.py migrate &&
python manage.py runserver 0.0.0.0:8000"

ports:
- "8000:8000"

depends_on:
- db
- rabbitmq
- celery_worker

environment:
- DB_HOST=db
- BROKER_URL=amqp://guest:guest@rabbitmq:5672//" # Change this to your RabbitMQ URL

celery_worker:
build:
context: .

command: >
sh -c "celery -A myproject worker -l info -Q new_task_queue"

depends_on:
- db
- rabbitmq

environment:
- DB_HOST=db
- BROKER_URL=amqp://guest:guest@rabbitmq:5672//" # Change this to your RabbitMQ URL

db:
image: postgres:12-alpine
environment:
POSTGRES_USER: myproject
POSTGRES_PASSWORD: myproject
POSTGRES_DB: myproject

rabbitmq:
image: rabbitmq:3.9-alpine

Step 5: Restart Docker Compose Services

Finally, restart the Docker Compose services to apply the changes:

docker-compose down
docker-compose up --build

10 Chapter 2. How to

django-cookiecutter, Release 1.0.0

2.6 Customize Django Rest Errors

This guide will walk you through the steps to customize the error handling in Django Rest using a custom exception
handler.

Step 1: Create a Custom Exception Handler

Create a new file custom_error_handlers.py in your core/views/ directory, and add the following code:

from django.core.exceptions import ObjectDoesNotExist
from rest_framework.exceptions import PermissionDenied
from rest_framework.views import exception_handler
from rest_framework.response import Response
from rest_framework import status

def custom_exception_handler(exc, context):
"""
Custom exception handler to handle PermissionDenied and ObjectDoesNotExist␣

→˓exceptions.
"""
if isinstance(exc, PermissionDenied):

return Response({"detail": "You do not have permission to perform this action."},
→˓ status=status.HTTP_403_FORBIDDEN)

if isinstance(exc, ObjectDoesNotExist):
return Response({"detail": "The requested resource does not exist."},␣

→˓status=status.HTTP_404_NOT_FOUND)

Let DRF handle other exceptions
response = exception_handler(exc, context)

if response is not None and response.status_code == status.HTTP_500_INTERNAL_SERVER_
→˓ERROR:

Customize error message for 500 errors
response.data = {"detail": "Internal server error occurred."}

return response

Step 2: Register the Custom Exception Handler

Add the custom_exception_handler to the EXCEPTION_HANDLER setting in your Django settings file:

REST_FRAMEWORK = {
'EXCEPTION_HANDLER': 'core.views.custom_error_handlers.custom_exception_handler'

}

Step 3: Test the Custom Exception Handler

Test the custom exception handler by triggering an exception in your Django Rest API. For example, if you try to access
a non-existent object, you should see the custom error message “The requested resource does not exist.”

2.6. Customize Django Rest Errors 11

django-cookiecutter, Release 1.0.0

2.7 Add Logs

Logging is a crucial aspect of any software system, as it allows developers to keep track of what’s happening in their
code and quickly diagnose and fix issues when they arise. The logging module in Python provides a powerful and
flexible way to manage logging in your application.

Step 1: Import the logging module

Start by importing the logging module in your Python file:

import logging

Step 2: Get a logger instance

To use the logging module, you first need to get an instance of the logger. You can create a logger with a specific name
by calling the getLogger() method on the logging module:

db_logger = logging.getLogger('db')

Here, we’re creating a logger with the name ‘db’, which we’ll use to log messages related to our database operations.

Step 3: Log messages

Once you have a logger instance, you can use it to log messages at different levels of severity, including debug, info,
warning, error, and critical. Here’s an example of logging an info message:

db_logger.info('info message')

You can also log warning messages:

db_logger.warning('warning message')

Step 4: Log exceptions

In addition to logging messages, you can also log exceptions using the exception() method of the logger. Here’s an
example:

try:
1/0

except Exception as e:
db_logger.exception(e)

This code will log the exception message and stack trace at the ERROR level.

Step 5: Configure logging settings

By default, the logging module will write log messages to the console. However, you can customize the logging settings
by configuring a logging handler. For example, you can write log messages to a file or send them to a remote server.
You can also customize the log format and level.

12 Chapter 2. How to

django-cookiecutter, Release 1.0.0

2.8 Change the database in cookiecutter settings and development
files from PostgreSQL

cookiecutter is a popular tool for creating templates for Python projects. By default, it comes with settings and devel-
opment files that use PostgreSQL as the database. However, you may want to use a different database, such as MySQL
or SQLite. In this guide, we’ll show you how to change the database in the cookiecutter settings and development files.

Step 1: Open the settings file

The first step is to open the settings file in your cookiecutter project. This file is located in the config directory of your
project. You can open it in your favorite text editor.

Step 2: Change the database settings

In the settings file, you’ll find a section that specifies the database settings. By default, it looks like this:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'cookiecutter',
'USER': 'cookiecutter',
'PASSWORD': 'cookiecutter',
'HOST': 'localhost',
'PORT': '5432',

}
}

To change the database, you’ll need to modify the ENGINE, NAME, USER, PASSWORD, HOST, and PORT settings
to match your desired database. For example, if you want to use MySQL, you would change the ENGINE setting to
‘django.db.backends.mysql’ and modify the other settings accordingly.

Step 3: Open the development file

Next, open the development file in your cookiecutter project. This file is located in the root directory of your project.

Step 4: Change the database settings

In the development file, you’ll find a section that specifies the database settings. By default, it looks like this:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'cookiecutter',
'USER': 'cookiecutter',
'PASSWORD': 'cookiecutter',
'HOST': 'localhost',
'PORT': '5432',

}
}

To change the database, you’ll need to modify the ENGINE, NAME, USER, PASSWORD, HOST, and PORT settings
to match your desired database. For example, if you want to use MySQL, you would change the ENGINE setting to
‘django.db.backends.mysql’ and modify the other settings accordingly.

Step 5: Save your changes

Once you’ve made your changes to the settings and development files, save your changes and exit your text editor.

Step 6: Test your changes

2.8. Change the database in cookiecutter settings and development files from PostgreSQL 13

django-cookiecutter, Release 1.0.0

Finally, you’ll want to test your changes to make sure everything is working as expected. You can run your cookiecutter
project as you normally would and verify that your database is being used correctly.

2.9 Customize Ansible Variables

Ansible is an open-source automation tool that can be used for a wide range of tasks, including configuration man-
agement, deployment, and orchestration. The django-cookiecutter project includes an Ansible playbook that can be
used to set up your development environment. In this guide, you’ll learn how to customize the Ansible variables in this
playbook to suit your needs.

Step 1: Modify the PostgreSQL variables

The Ansible playbook includes variables for setting up a PostgreSQL database and user. You can modify these variables
to use your own PostgreSQL database and user. Open the ansible/vars/main.yml file and modify the following variables:

• postgres_database: Change this variable to the name of your desired PostgreSQL database.

• postgres_user: Change this variable to the name of your desired PostgreSQL user.

• postgres_password: Change this variable to the password for your PostgreSQL user.

For example, to use a PostgreSQL database named mydb and a user named myuser with the password mypassword,
you would modify the variables as follows:

postgres_database: mydb
postgres_user: myuser
postgres_password: mypassword

Step 2: Modify the project name

The project_name variable in the ansible/vars/main.yml file specifies the name of your project. You can modify this
variable to use your own project name:

project_name: myproject

Step 3: Modify the Docker Compose version

The docker_compose_version variable in the ansible/vars/main.yml file specifies the version of Docker Compose that
will be installed. You can modify this variable to use a different version of Docker Compose:

docker_compose_version: 1.29.2

Step 4: Modify the Nginx template file

The ansible/roles/nginx/tasks/main.yml file includes a task for configuring Nginx. This task uses a Jinja2 template to
generate the Nginx configuration file. You can modify the src variable in this task to point to the template file for your
own Nginx configuration.

For example, if you’ve created a custom Nginx configuration file called myproject.conf.j2, you would modify the task
as follows:

- name: Generate Nginx configuration file
template:
src: "path/to/myproject.conf.j2"
dest: "/etc/nginx/sites-available/{{ project_name }}"

14 Chapter 2. How to

django-cookiecutter, Release 1.0.0

2.10 Adding Items to the Docs/Source Folder

To add items to the docs/source folder, follow these steps:

1. Navigate to the docs/source folder in your project directory.

2. Create a new file for your item using a descriptive name, such as my_item.rst.

3. Open the file in a text editor and add your content. Use the reStructuredText syntax to format your content, and
be sure to include a title for your item.

4. Save the file and commit it to your project’s version control system.

5. If you want your item to appear in the table of contents, update the index.rst file in the docs/source folder. Add
a new entry for your item using the following format:

Replace My Item with the title of your item, and my_item with the name of the file you created in step 2.

6. Build the documentation using Sphinx. You can do this by running the following command from the root of your
project directory:

2.10. Adding Items to the Docs/Source Folder 15

django-cookiecutter, Release 1.0.0

16 Chapter 2. How to

CHAPTER

THREE

CORE

The apps.core.models module contains several models that are used across the application. In this document, we will
describe the TrackableModel, TimestampedModel, and Task models.

3.1 TrackableModel

The TrackableModel is an abstract model that provides fields to automatically track changes and keep a record of who
made them. It has the following attributes:

• created_at (DateTimeField): The timestamp when the model instance was first created.

• updated_at (DateTimeField): The timestamp of the most recent update to the model instance.

• created_by (ForeignKey): The user who created the model instance.

• updated_by (ForeignKey): The user who last updated the model instance.

• history (JSONField): A JSON field that stores a complete history of changes to the model instance, including
timestamps and the user who made each change.

To use this model, you can create a new model and inherit from it:

from django.db import models
from apps.accounts.models import TrackableModel

class MyModel(TrackableModel):
my_field = models.CharField(max_length=255)

3.2 TimestampedModel

The TimestampedModel is an abstract model that builds on the functionality of TrackableModel by adding extra fields
for timestamping. It has the following attributes:

• date_added (DateTimeField): The timestamp when the model instance was first added.

• date_updated (DateTimeField): The timestamp of the most recent update to the model instance.

• date_deleted (DateTimeField): The timestamp of when the model instance was deleted (if applicable).

To use this model, you can create a new model and inherit from it:

17

django-cookiecutter, Release 1.0.0

from django.db import models
from apps.core.models import TimestampedModel

class MyModel(TimestampedModel):
my_field = models.CharField(max_length=255)

3.3 Task

The Task model is used for tracking tasks. It has the following attributes:

• name (str): The name of the task.

• task_ingestor (str): The ingestor responsible for the task.

• datetime (datetime): The date and time the task was created.

• status (str): The current status of the task. Allowed values are ‘pending’, ‘processing’, ‘processed’, and ‘failed’.

It also has the following methods:

• start_processing(): Transition the task from ‘pending’ to ‘processing’.

• complete_processing(): Transition the task from ‘processing’ to ‘processed’ and delete the record.

• fail_processing(): Transition the task from ‘processing’ to ‘failed’.

To use this model, you can create a new model and inherit from it:

from django.db import models
from apps.core.models import Task

class MyTaskModel(Task):
my_field = models.CharField(max_length=255)

3.4 apps.core.models

class apps.core.models.Task(*args, **kwargs)
Bases: Model

A model for tracking tasks.

name

The name of the task.

Type
str

task_ingestor

The ingestor responsible for the task.

Type
str

18 Chapter 3. Core

django-cookiecutter, Release 1.0.0

datetime

The date and time the task was created.

Type
datetime

status

The current status of the task. Allowed values are ‘pending’, ‘processing’, ‘processed’, and ‘failed’.

Type
str

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

TASK_STATUS_CHOICES = (('pending', 'Pending'), ('processing', 'Processing'),
('processed', 'Processed'), ('failed', 'Failed'))

TASK_STATUS_FAILED = 'failed'

TASK_STATUS_PENDING = 'pending'

TASK_STATUS_PROCESSED = 'processed'

TASK_STATUS_PROCESSING = 'processing'

complete_processing()

Transition the task from ‘processing’ to ‘processed’ and delete the record.

datetime

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

fail_processing()

Transition the task from ‘processing’ to ‘failed’.

get_next_by_datetime(*, field=<django.db.models.fields.DateTimeField: datetime>, is_next=True,
**kwargs)

get_previous_by_datetime(*, field=<django.db.models.fields.DateTimeField: datetime>, is_next=False,
**kwargs)

get_status_display(*, field=<django.db.models.fields.CharField: status>)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

save(*args, **kwargs)
Save the task

3.4. apps.core.models 19

django-cookiecutter, Release 1.0.0

start_processing()

Transition the task from ‘pending’ to ‘processing’.

status

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

task_ingestor

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class apps.core.models.TimestampedModel(*args, **kwargs)
Bases: TrackableModel

Abstract model that builds on the functionality of
TrackableModel by adding extra fields for timestamping.

date_added

The timestamp when the model instance was first added.

Type
DateTimeField

date_updated

The timestamp of the most recent update to the model instance.

Type
DateTimeField

date_deleted

The timestamp of when the model instance was deleted (if applicable).

Type
DateTimeField

class Meta

Bases: object

abstract = False

created_by

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

date_added

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

date_deleted

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

20 Chapter 3. Core

django-cookiecutter, Release 1.0.0

date_updated

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True,
**kwargs)

get_next_by_date_added(*, field=<django.db.models.fields.DateTimeField: date_added>, is_next=True,
**kwargs)

get_next_by_date_updated(*, field=<django.db.models.fields.DateTimeField: date_updated>,
is_next=True, **kwargs)

get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True,
**kwargs)

get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>,
is_next=False, **kwargs)

get_previous_by_date_added(*, field=<django.db.models.fields.DateTimeField: date_added>,
is_next=False, **kwargs)

get_previous_by_date_updated(*, field=<django.db.models.fields.DateTimeField: date_updated>,
is_next=False, **kwargs)

get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>,
is_next=False, **kwargs)

updated_by

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

class apps.core.models.TrackableModel(*args, **kwargs)
Bases: Model

Abstract model that provides fields to automatically track changes and keep a record of who made them.

created_at

The timestamp when the model instance was first created.

Type
DateTimeField

updated_at

The timestamp of the most recent update to the model instance.

Type
DateTimeField

3.4. apps.core.models 21

django-cookiecutter, Release 1.0.0

created_by

The user who created the model instance.

Type
ForeignKey

updated_by

The user who last updated the model instance.

Type
ForeignKey

history

A JSON field that stores a complete history of changes to the model instance, including timestamps and the
user who made each change.

Type
JSONField

class Meta

Bases: object

abstract = False

created_at

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

created_by

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

created_by_id

get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True,
**kwargs)

get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True,
**kwargs)

get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>,
is_next=False, **kwargs)

get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>,
is_next=False, **kwargs)

updated_at

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

22 Chapter 3. Core

django-cookiecutter, Release 1.0.0

updated_by

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

updated_by_id

3.4. apps.core.models 23

django-cookiecutter, Release 1.0.0

24 Chapter 3. Core

CHAPTER

FOUR

ACCOUNTS

4.1 Models

4.1.1 CustomUserManager and CustomUser

The CustomUserManager and CustomUser models in the apps.accounts.models file are designed to extend the
default Django user model with additional functionality and customizations.

To understand how these models work, let’s start by examining the CustomUserManager model. This model is respon-
sible for creating and managing instances of the CustomUser model. It overrides the default Django BaseUserManager
to provide custom functionality. Specifically, the CustomUserManager model provides two additional methods:

• create_user(): This method creates a new user instance using the provided email and password. It sets the
is_staff and is_superuser attributes to False, indicating that this is a regular user account.

• create_superuser(): This method creates a new user instance with the provided email and password, but sets
the is_staff and is_superuser attributes to True. This indicates that this is an administrator account with elevated
privileges.

The CustomUser model itself extends the default Django AbstractBaseUser and PermissionsMixin models to provide
additional customizations. It defines several fields, including email, first_name, and last_name. It also defines two
boolean fields, is_active and is_staff, which determine whether the user account is currently active and whether the
user has staff permissions, respectively.

To use these models in your Django project, you’ll first need to import CustomUSer into your file. You can do this
using the following code:

from apps.accounts.models import CustomUser

user = CustomUser.objects.create_user(email = 'user@example.com', password = 'password*␣
→˓**23')
admin = CustomUser.objects.create_superuser(email = 'admin@example.com', password =
→˓'password* **23')

25

django-cookiecutter, Release 1.0.0

4.1.2 UserVisitHistory

The UserVisitHistory model in the apps.accounts.models module is used to store the visit history of users in your
application. This model is particularly useful if you want to keep track of which pages or sections of your app users are
visiting, how often they visit, and when they last visited.

The structure of the UserVisitHistory model consists of the following fields:

• user: A foreign key to the user who made the visit.

• timestamp: The date and time of the visit.

• url: The URL of the page visited.

• referer: The URL of the referring page, if any.

• user_agent: The user agent string for the browser or other client used to make the visit.

To use these models in your Django project, you’ll first need to import CustomUSer into your file. You can do this
using the following code:

from apps.accounts.models import UserVisitHistory

user = CustomUser.objects.get(id=* **)
UserVisitHistory.objects.create(

user=user,
url='/example',
referer=None,
user_agent='Mozilla/5.0 (Windows NT * **0.0; Win64; x64) AppleWebKit/537.36 (KHTML,␣

→˓like Gecko) Chrome/58.0.3029.* **0 Safari/537.3'
)

To retrieve user visit history records, you can use the objects manager of the UserVisitHistory model:

from django.utils import timezone
from apps.accounts.models import CustomUSer
from apps.accounts.models import UserVisitHistory

Get all user visit history records for a specific user
user = CustomUser.objects.get(id=* **)
visit_history = UserVisitHistory.objects.filter(user=user)

Get all user visit history records for a specific URL
visit_history = UserVisitHistory.objects.filter(url='/example')

Get all user visit history records for a specific time range
start_time = timezone.now() - timezone.timedelta(days=7)
end_time = timezone.now()
visit_history = UserVisitHistory.objects.filter(timestamp__range=(start_time, end_time))

26 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

4.1.3 LoginHistoryTrail

LoginHistoryTrail is a model that stores a trail of login attempts made by users. It is a part of the apps.accounts.models
module. This model has the following fields:

• user: A foreign key to the user who made the login attempt.

• timestamp: The date and time of the login attempt.

• successful: A boolean field indicating whether the login attempt was successful or not.

• ip_address: The IP address used to make the login attempt.

• user_agent: The user agent string for the browser or other client used to make the login attempt.

• location: The location (city, country) of the IP address used to make the login attempt, if available.

To use this model in your Django project, you need to follow these steps:

from apps.accounts.models import LoginHistoryTrail

LoginHistoryTrail.objects.create(user=user, ip_address=ip_address, user_agent=user_agent,
→˓ location=location, successful=successful)

To retrieve login history trail records, you can use the objects attribute of the LoginHistoryTrail model:

from apps.accounts.models import LoginHistoryTrail

LoginHistoryTrail.objects.create(user=user, ip_address=ip_address, user_agent=user_agent,
→˓ location=location, successful=successful)

4.1.4 LoginAttemptHistory

The LoginAttemptHistory model is a Django model used to store a history of login attempts made by users . This
model is located in the apps.accounts.models

Fields:

• user: A foreign key to the CustomUser model representing the user who made the login attempt.

• timestamp: The date and time of the login attempt, automatically generated when a new instance is created.

• successful: A boolean field indicating whether the login attempt was successful or not.

• ip_address: The IP address used to make the login attempt, stored as a GenericIPAddressField.

• user_agent: The user agent string for the browser or other client used to make the login attempt, stored as a
TextField.

• location: The location (city, country) of the IP address used to make the login attempt, if available, stored as a
CharField.

Usage: To use the LoginAttemptHistory model, you can import it in any Django file using the from
apps.accounts.models import LoginAttemptHistory statement.

To create a new LoginAttemptHistory instance, you can call its constructor and pass the necessary arguments as follows:

from apps.accounts.models import LoginAttemptHistory
from apps.accounts.models import CustomUser
from django.utils import timezone

(continues on next page)

4.1. Models 27

django-cookiecutter, Release 1.0.0

(continued from previous page)

user = CustomUser.objects.get(email='example@example.com')
ip_address = '* **27.0.0.* **'
user_agent = 'Mozilla/5.0 (Windows NT * **0.0; Win64; x64) AppleWebKit/537.36 (KHTML,␣
→˓like Gecko) Chrome/58.0.3029.* **0 Safari/537.3'

create new instance
login_attempt = LoginAttemptHistory(

user=user,
successful=False,
ip_address=ip_address,
user_agent=user_agent,
location=None

)

save instance to database
login_attempt.save()

To retrieve all login attempts for a particular user, you can use Django’s related manager:

from apps.accounts.models import CustomUser
from apps.accounts.models import LoginAttemptHistory

user = CustomUser.objects.get(email='example@example.com')
login_attempts = user.loginattempthistory_set.all()

To retrieve all successful login attempts for a particular user:

from apps.accounts.models import CustomUser
from apps.accounts.models import LoginAttemptHistory

user = CustomUser.objects.get(email='example@example.com')
successful_login_attempts = user.loginattempthistory_set.filter(successful=True)

4.1.5 ExtraData

The ExtraData model is used to store additional information related to user activity, such as browser information, IP
address, device details, operating system, and location. This information can be useful for tracking user activity and
analyzing user behavior on your website or application.

Fields

• user (ForeignKey): A foreign key to the CustomUser model, indicating which user this extra data belongs to.

• timestamp (DateTimeField): A date and time field indicating when this extra data was recorded. This field
is set to auto_now_add, meaning it will automatically be set to the current date and time when a new record is
created.

• browser (CharField): A string field that stores the user’s browser information.

• ip_address (GenericIPAddressField): A field that stores the user’s IP address. This field automatically validates
the input to ensure it is a valid IP address.

• device (CharField): A string field that stores the user’s device details.

28 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

• os (CharField): A string field that stores the user’s operating system.

• location (CharField): A string field that stores the user’s location information.

To use the ExtraData model, you can create a new record whenever you want to store additional information related to
user activity.

from apps.accounts.models import ExtraData
from apps.accounts.models import CustomUser

Assume that we have a user object representing the current user
current_user = CustomUser.objects.get(id=1)

Create a new ExtraData record
extra_data = ExtraData.objects.create(

user=current_user,
browser='Chrome',
ip_address='192.168.0.1',
device='Desktop',
os='Windows 10',
location='New York'

)

The timestamp field will be set automatically by the auto_now_add argument in the␣
→˓model definition.

4.1.6 OTP

The OTP model is used to store one-time passwords (OTPs) associated with a user in the CustomUser model. This
model is defined in the apps.accounts.models module.

Fields

• user (ForeignKey): The user associated with the OTP. This field is required.

• code (CharField): The OTP code. This field is unique and has a maximum length of 4 characters. This field is
required.

• active (BooleanField): A boolean indicating whether the OTP is active or not. By default, this field is set to
True.

• created_at (DateTimeField): The date and time when the OTP was created. This field is automatically set when
the OTP is created.

• updated_at (DateTimeField): The date and time when the OTP was last updated. This field is automatically
set when the OTP is saved.

Methods

• create(): Creates a new OTP for the given user and returns it.

• get_latest(): Gets the latest active OTP for the given user or returns None.

• is_valid(): Checks whether or not the OTP is valid (i.e. active and not expired) and returns a boolean value.

• save(): Saves the OTP to the database after validating the code is a 4-digit number or raises a ValidationError.

To create a new OTP for a user, call the OTP.create() method and pass in the user as an argument:

4.1. Models 29

django-cookiecutter, Release 1.0.0

from accounts.models import CustomUSer
from accounts.models import OTP

user = CustomUser.objects.get(pk=1)
otp = OTP.create(user)

To get the latest active OTP for a user, call the OTP.get_latest() method and pass in the user as an argument:

from accounts.models import CustomUSer
from accounts.models import OTP

user = CustomUser.objects.get(pk=1)
otp = OTP.get_latest(user)

To check if an OTP is valid, call the is_valid() method on an instance of the OTP model:

if otp.is_valid():
The OTP is valid

else:
The OTP is invalid

4.2 apps.accounts.models

class apps.accounts.models.CustomUser(*args, **kwargs)
Bases: AbstractBaseUser, PermissionsMixin

A custom user model that extends Django’s built-in User model.

Fields:
email: The user’s email address (unique). phone_number: The user’s phone number (optional). is_active:
Whether the user account is active. is_staff: Whether the user is a member of the staff. is_superuser:
Whether the user has all permissions. date_joined: The date and time the user account was created.

USERNAME_FIELD

The field to use for authentication (email in this case).

REQUIRED_FIELDS

A list of required fields for creating a user.

__str__()

Returns the user’s email address.

Managers:
objects: The manager for this model.

Meta:
verbose_name: A human-readable name for this model (singular). verbose_name_plural: A human-
readable name for this model (plural).

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

30 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

REQUIRED_FIELDS = []

USERNAME_FIELD = 'email'

date_joined

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

email

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

extradata_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

get_next_by_date_joined(*, field=<django.db.models.fields.DateTimeField: date_joined>, is_next=True,
**kwargs)

get_previous_by_date_joined(*, field=<django.db.models.fields.DateTimeField: date_joined>,
is_next=False, **kwargs)

groups

Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza(Model):
toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

is_staff

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

logentry_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

4.2. apps.accounts.models 31

django-cookiecutter, Release 1.0.0

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

loginattemptshistory_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

loginhistorytrail_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

objects = <apps.accounts.models.CustomUserManager object>

otp_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

phone_number

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user_permissions

Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza(Model):
toppings = ManyToManyField(Topping, related_name='pizzas')

Pizza.toppings and Topping.pizzas are ManyToManyDescriptor instances.

32 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

uservisithistory_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

class apps.accounts.models.CustomUserManager(*args, **kwargs)
Bases: BaseUserManager

Custom user model manager where email is the unique identifier for authentication instead of username.

create_superuser(email, password=None, **extra_fields)
Create and save a SuperUser with the given email and password.

create_user(email, password=None, **extra_fields)
Create and save a User with the given email and password.

class apps.accounts.models.ExtraData(*args, **kwargs)
Bases: Model

Model for storing extra data related to user activity, such as browser, IP address, device, operating system, and
location.

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

browser

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

device

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>, is_next=True,
**kwargs)

get_previous_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>,
is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

4.2. apps.accounts.models 33

django-cookiecutter, Release 1.0.0

ip_address

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

location

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

os

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

user_id

class apps.accounts.models.LoginAttemptsHistory(*args, **kwargs)
Bases: Model

Model to store a history of login attempts made by users.

Fields:
user: A foreign key to the user who made the login attempt. timestamp: The date and time of the login
attempt. successful: Whether the login attempt was successful. ip_address: The IP address used to make
the login attempt. user_agent: The user agent string for the browser or

other client used to make the login attempt.

location: The location (city, country) of the IP
address used to make the login attempt, if available.

Meta:
verbose_name_plural: A human-readable name for this model (plural). ordering: The default ordering for
querysets of this model,

by timestamp in descending order.

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

34 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

get_next_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>, is_next=True,
**kwargs)

get_previous_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>,
is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

ip_address

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

location

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

successful

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

user_agent

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user_id

class apps.accounts.models.LoginHistoryTrail(*args, **kwargs)
Bases: Model

Model to store a trail of login attempts made by users.

Fields:
user: A foreign key to the user who made the login attempt. timestamp: The date and time of the login
attempt. successful: Whether the login attempt was successful. ip_address: The IP address used to make
the login attempt. user_agent: The user agent string for the browser or other client

used to make the login attempt.

location: The location (city, country) of the IP address used
to make the login attempt, if available.

4.2. apps.accounts.models 35

django-cookiecutter, Release 1.0.0

Meta:
verbose_name_plural: A human-readable name for this model (plural). ordering: The default ordering for
querysets of this model,

by timestamp in descending order.

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

get_next_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>, is_next=True,
**kwargs)

get_previous_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>,
is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

ip_address

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

location

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

successful

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

user_agent

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user_id

36 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

class apps.accounts.models.OTP(*args, **kwargs)
Bases: Model

Model for storing one-time passwords (OTPs) associated with a user.

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

active

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

code

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod create(user)
Creates a new OTP for the given user.

Parameters
user (CustomUser) – The user associated with the new OTP.

Returns
The newly created OTP.

created_at

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod get_latest(user)
Gets the latest active OTP for the given user.

Parameters
user (CustomUser) – The user associated with the OTP.

Returns
The latest active OTP, or None if there are no active OTPs.

get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True,
**kwargs)

get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True,
**kwargs)

get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>,
is_next=False, **kwargs)

get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>,
is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

4.2. apps.accounts.models 37

django-cookiecutter, Release 1.0.0

is_valid()

Checks whether or not the OTP is valid (i.e. active and not expired).

Returns
True if the OTP is valid, False otherwise.

objects = <django.db.models.manager.Manager object>

save(*args, **kwargs)
Saves the OTP to the database.

Parameters

• *args –

• **kwargs –

Raises
ValidationError – If the code is not a 4-digit number.

updated_at

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

user_id

class apps.accounts.models.UserVisitHistory(*args, **kwargs)
Bases: Model

Model to store the history of user visits to the site.

Fields:
user: A foreign key to the user who made the visit. timestamp: The date and time of the visit. url: The
URL of the page visited. referer: The URL of the referring page, if any. user_agent: The user agent string
for the browser

or other client used to make the visit.

Meta:
verbose_name_plural: A human-readable name for this model (plural). ordering: The default ordering for
querysets of this model,

by timestamp in descending order.

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

38 Chapter 4. Accounts

django-cookiecutter, Release 1.0.0

get_next_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>, is_next=True,
**kwargs)

get_previous_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>,
is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

referer

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

url

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

user_agent

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user_id

4.2. apps.accounts.models 39

django-cookiecutter, Release 1.0.0

40 Chapter 4. Accounts

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

41

	Features:
	Important:

	How to
	Set Up Development with django-cookiecutter
	Change the Django Project Name from “cookiecutter” to a Desired Name
	Customize AWS File Storage in cookiecutter.storagebackend using boto3
	Change Celery Task Name in cookiecutter.celery and Updating Docker Compose celery_worker Command
	Replace Redis with RabbitMQ
	Customize Django Rest Errors
	Add Logs
	Change the database in cookiecutter settings and development files from PostgreSQL
	Customize Ansible Variables
	Adding Items to the Docs/Source Folder

	Core
	TrackableModel
	TimestampedModel
	Task
	apps.core.models

	Accounts
	Models
	CustomUserManager and CustomUser
	UserVisitHistory
	LoginHistoryTrail
	LoginAttemptHistory
	ExtraData
	OTP

	apps.accounts.models

	Indices and tables

